
The effects of point-like pinning in a vortex lattice

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys.: Condens. Matter 8 6747

(http://iopscience.iop.org/0953-8984/8/36/025)

Download details:

IP Address: 171.66.16.206

The article was downloaded on 13/05/2010 at 18:38

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/8/36
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter8 (1996) 6747–6758. Printed in the UK

The effects of point-like pinning in a vortex lattice

Sahin Aktas
Marmara University, Faculty of Art and Science, Department of Physics, Istanbul, Turkey

Received 5 October 1995, in final form 12 April 1996

Abstract. The effect of a point-like pinning centre in a vortex lattice formed in a sample size
of the order of microns is investigated by using the force calculation method. The possible
types of interaction between the pinning centre and the surrounding vortices are simulated to see
the nature and extent of distortions in the vortex lattice. The primary results suggests a critical
parameter for a phase transition from a long-range orderly state to a disorganized vortex state
for a sample grain size of the order of microns. The effect of pinning is found to increase for
higher applied fields.

1. Introduction

Right after the discovery of the new type of high-temperature superconductors, there was
great excitement about its technological impact. These new superconductors are type II and
allow magnetic flux to penetrate as quantized magnetic vortices carrying a quantum of flux
φ0. When these superconductors carry an applied current, the Lorentzian type of interaction
between the applied current and the vortices causes the vortices to move, which in turn
creates a resistive loss, resulting in a reduction in the current-carrying capacity (critical
currentJc) of the superconducting material. Therefore, the vortices must be strained to be
immobile in order to increaseJc. The various defects in the material already prevent the
vortices from moving freely since the vortices are pinned down and do not move at all until
a greater force acts upon on them to free the vortices from pinning.

There has been extensive study of the nature and effects of pinning to increase
the current-carrying capacity that is very important for the technological uses of
superconductors. The Ginzburg–Landau free energy has been used in a number of published
simulations [1–3].

In the present article, the nature and the scale of possible interactions between a pinning
centre and the surrounding vortices will be studied by the force calculation method instead
of the free-energy method so that the collective behaviour of the vortex lattice under a
pinning force will be studied.

2. The Lorentz force between vortices

A vortex consists of a normal region called the core with a radius equal to the coherence
length, and a region of circulating screening currentJ with a radius equal to the penetration
depthλ. When the density of vortices is so low that their average separation is much larger
thanλ, the forces between them can easily be calculated through the Lorentz force expression
F = J ×φ0, since the currents of one vortex can be assumed to be uniform over the region
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of the other vortex. When the density of vortices increases to a point where the average
distance between them is comparable withλ, then the force can no longer be calculated in
this simple way, but the integral ofJ × B must be evaluated.

The London equations can be used to treat the vortices up to the density where they
have the separationD = 5.4ξ [4, 5] which corresponds to an applied field of about1

4Hc2

for κ(λ/ξ) = 100. This approach is appropriate especially for high-κ cases where the core
region can be treated as point like compared with the penetration depthλ. The field and
the current distribution of a single vortex are obtained by solving the London equations in
an isotropic plane as given by [6]

Bz(r) = φ0

2πλ2
K0(r) (1)

Jθ (r) = φ0

2πλ3
K1(r) (2)

where K0(r) and K1(r) are the zeroth- and first-order modified Bessel functions,
respectively, andr is normalized withλ. The vortices are assumed to be aligned with
the symmetry axis of the axially symmetric superconductor. Using the field and the current
distributions given by equations (1) and (2), the Lorentz force between two vortices was
calculated and it was used to simulate the formation of a vortex lattice in a previous study
by Aktas et al [7]. In the present article, the same method will be used to deal with
vortex–vortex interactions in the simulations.

3. Pinning force

The best part of a computer simulation of a physical problem is that the problem can really
be approximated to simpler steps without involving the complexity of the problem. In
the simulations, vortices were treated as classical particles with a repulsive interaction, and
pinning centres were approximated by the centres of attractive potentials with the interaction
ranges ofλ. The hard-core part of the potential is neglected. This corresponds to assuming
that the Ginzburg–Landau constantκ is large. The pinning has been treated in this way in
recent studies represented by [8, 9]. Two different types of potential model has been tried
to represent different pinning mechanisms. The possible outcome for each case has been
simulated in a vortex lattice formed by 800 vortices. The exact method of simulating the
formation of a vortex lattice has already been given in the article by Aktaset al [7]; here
the only addition to that simulation is the addition of the pinning sites to the scheme to see
the resulting effects on the lattice structure, and the size and the number of vortices have
doubled. The pinning–vortex interactionFp can in general be represented as

Fp = Cf (r)r̂ (3)

whereC is related to the strength of the interaction such thatC = 1 means a normalization
to the scale of vortex–vortex interaction that the peak value of the vortex–vortex repulsive
force has been calculated as being approximately at the order of 10−10 N m−1 for the case
when λ = 1000 Å, and the sign ofC determines whether it is an attractive or repulsive
interaction (negativeC means an attractive interaction). The functionf (r) represents ther
dependence of the interaction which will be studied. The vectorr is the directional vector
towards the vortex along the line which connects the pinning and the vortex.

The first choice forf (r) is an exponential dependence since the vortex–vortex
interaction has an exponential dependence forr � λ. On the other hand some other
mechanism should also be tried like 1/(ω2+r2) to include a possible Coulombic interaction.
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Figure 1. (a) The initial configuration of randomly located vortices. (b) After 2000 steps, the
resultant configuration of vortices without a pinning. Here the size of the sample is 50λ × 50λ
square, and the number of vortices is 800. The radius of the circles in the figure that represent
vortices are scaled toλ. (c) and (d) same as (a) and (b) except for a sample size of 100λ×100λ.

4. Simulations

The pinning centre is assumed to be immobile and positioned at the centre of the vortex
population in two different ways.

(a) The pinning centre is placed at the beginning phase of the vortex lattice simulation
from initially randomly placed vortices.

(b) The pinning centre is added in a later phase such that an orderly vortex lattice had
already been formed in the absence of any pinning centre.

The simulations were performed for sample sizes of 50λ × 50λ, and 100λ × 100λ to
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Figure 2. Effect of the pinning for a sample size of 50× 50. (a) Vortex configuration without
the pinning. (b) With the pinning of the interaction strengthC = 0.1. The pinning centre is
marked by the full circle at the centre of the sample. There is almost no effect of the pinning.
(c) The case withC = 1, where the pinning seems to change the symmetry but vortices can still
form an orderly state. (d) WhenC = 5, at least two vortices are now centred by the pinning,
and the order is broken.

check the size effect. All the lengths throughout the simulations are scaled to unit lengthλ

The vortices are allowed to interact with each other and with the pinning and move a step
to reduce the lattice energy. In order to see and compare the effects of different kinds of
pinning, the same initially randomly positioned vortex population shown in figure 1 is used
to start the simulations in all the different cases. Figures 1(b) and 1(d) show the resultant
hexagonal vortex states that are formed in the absence of any imperfections, without any
pinning interactions. Here, the vortices form the main domain which covers most of the
vortex population. At the edges of the sample the density of the vortices increases, and
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Figure 3. Same simulations represented by figure 1, except for a larger sample size of 100×100.
Here pinning seems weaker so that it can barely break the symmetry forC = 5.

the vortices are aligned with the edges to comply with the boundary conditions due to the
outside applied field. The effect of pinning will be studied by comparing this undisturbed
pattern with the cases including pinning.

4.1. The case forf (r) = Cexp(−r)

The pinning–vortex interaction is assumed to decrease exponentially with the scale of the
normalized distancer. Figure 2 shows the resultant configurations of vortex populations with
a pinning of the same type but of different strengths for a sample size of 50λ×50λ. Figure 3
is same as figure 2 but for a sample size of 100λ×100λ. Figures 2(b) and 3(b) give the case
whereC is 0.1. Here the existence of the pinning centre is almost unnoticeable in both cases.
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Figure 4. The case when the pinning centres were introduced after the vortex lattice is formed
for a sample size of 50× 50. (a) The configuration of vortices at the moment when the pinning
centre is placed at the centre of the sample. (b) After the vortices were relaxed to resettle
with the pinning. Here too, withC = 0.1, pinning is not strong enough to have an impact.
(c) Pinning withC = 1 reshuffles the vortices. (d) WithC = 5, pinning is strong enough to
destroy the vortex lattice.

However, when the strength of the pinning C is raised to 1, there is noticeable distortions
in the smaller sample, but the overall vortex configuration still suggests the existence of
long-range order within the main domain as seen in figure 2(c), and in figure 3(c). The
difference between the two figures suggests that the same pinning centre is more effective
in the smaller sample with the same number of vortices in higher fields. In simulations
represented by figures 2(d) and 3(d) the pinning strength constant is increased to 5. Here
the attractive pinning force succeeds in moving at least two vortices to its location with the
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Figure 5. The same type of simulation for a larger size of 100× 100. Here too the effect of
pinning seems to become weaker compared with figure 4.

result of creating a region of lower density of vortices right around the pinning centre as
seen in both cases although to a lesser degree in the larger sample. In the case of the small
sample (higher applied field) the whole vortex population is affected by this rather strong
attractive pinning so that long-range order cannot be set up by the vortices. This behaviour
suggests the occurrence of a phase change in the vortex lattice.

The same simulations are repeated for the cases of inserting pinning centres into the
sample after the regular vortex lattice is formed (figure 4). Figures 5 and 6 conclude that
the vortex lattice is more stable in cases having pinning centres the whole time instead of
at a later time after the lattice is formed.



6754 S Aktas

Figure 6. The treatment of pinning represented by a Coulomb-like potential. The sample size is
50× 50. (a) Without the pinning. (b)C = 0.1 seems to be effective enough to have an impact
contrary to the exponential case represented in figure 2(b). (c) WithC = 1, pinning almost
prevents the formation of the vortex lattice. (d)C = 5 pinning totally breaks any long-range
order.

4.2. The screened Coulomb typef (r) = C/(ω2 + r2)

Another possible type of interaction for the pinning can be thought of as Coulomb-like
(screened Coulomb). The interaction between localized charge fluctuations and the screening
current of vortices can be approximated by this type of interaction. Hereω = 1 is taken for
the rest of the paper. Figure 6(b) shows the final vortex configuration forC = 0.1 in which
the vortices seem to be affected by the existence of the pinning but they still manage to
form a distorted hexagonal state. The marked difference from the previous type of pinning
is that the Coulombic potential seems to cause a stronger pinning centre. IncreasingC to
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Figure 7. Same as figure 6 except for a larger sample size of 100× 100.

1 so as to reach to the same strength with a vortex forr ≈ λ [7] causes vortices to start
to pile up around the proposed pinning centre at the midpoint of the vortex population as
seen from figure 6(c). Once the strength parameterC is increased to 5, which is shown
by figure 6(d), the pinning destroys the long-range orderly state of vortices by attracting
more vortices around the pinning as in the case shown previously in figures 2(d), 3(d), 4(d)
and 5(d). The density of vortices around the pinning centre decreases as in the exponential
case. The change in the vortex configuration whenC is raised fromC = 1 to C = 5 again
suggests a kind of phase change as in the exponential case. Increasing the sample size has
the same weakening effect for the pinning centre as seen from figures 6(d) and 7(d), thus
enforcing the conclusion that pinning centres are more effective at higher applied fields.

The vortex lattice seems to be less stable under the action of pinning represented by a



6756 S Aktas

Figure 8. The case for adding the Coulomb-like potential after the vortex lattice is formed for
a sample size of 50× 50. Compared with the exponential potential, the Coulomb-like potential
is more effective owing to a longer interaction range.

Coulombic potential, since a Coulombic potential has a longer range of interaction than an
exponential potential with the same interaction constant.

5. Discussion

The stability of the final vortex configurations (as in figures 1(b) and 1(d)) may be a valid
issue, since they are dependent on the initial conditions. It appears that a real vortex lattice
has more than one equilibrium configuration depending on the initial conditions. This is
partly due to the side effect of a finite size sample and the fact that simulations were done
without thermal fluctuations at 0◦C. The vortices seem to lock on to a relative minimum-
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Figure 9. Same as figure 8, except that the size of the sample is 100× 100.

energy state. Since these energy levels are stable enough to resist disturbances due to
attractive pinning up to a certain extent (the pinning strength constant must be larger than
1 to have an observable effect on vortex configurations as can be seen in figures 2(b), 2(c),
3(b) and 3(c)), this proves the stability of these different vortex configurations. Also the
result from the addition of the pinning centre to the vortex lattice as in figure 4 shows that
the vortex lattice is stable enough to resist the destabilization caused by the pinning for
C = 0.1 (compare figures 4(a) and 4(b)).

There seems to have a phase transition depending on the strength of the interaction
constantC for the sample sizes represented, no matter what type of pinning that it represents.
The transition from a long-range order state to a random state is already expected to occur
for a certain C, but it is interesting that it occurs for approximately the same strength
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(C = 5) for the different kinds of interaction for the same sample size that have been
investigated. In all cases, the pinning attracts vortices around it, and these vortices in turn
create a somewhat isolated region around the pinning. As expected the effect of a single
pinning centre diminishes when the sample size increases. Thus the phase transition at
C = 5 is valid for the specific sample size represented here.

A higher applied field makes a pinning centre more effective, since the number of
neighbouring vortices to the pinning centre increases with increasing vortex density. Adding
pinning centres to the ordered vortex lattice makes pinning more effective on the vortex
lattice as seen by comparing figures 2(c) and 4(c) and figures 3(d) and 5(d).

The field range in which the simulations were made can be found from

Bav = nφ0

area
(4)

putting n = 800, and the area as 50λ × 50λ whereλ = 1000 Å; this givesBav = 0.06 T
andBav = 0.015 T for the sample size of 100λ×100λ. These are reasonable values for the
fields expected around a superconducting sample in industrial applications. The size of the
sample area used in the simulation is 50λ × 50λ = 25 µm2, which is the area of a typical
superconducting grain. An experimental study gives a value of around 10−6 N m−1 for the
pinning force in Pb–Bi films [10]. This result is in agreement with the numerical results
obtained by our simulations where the scale for the vortex–vortex interaction force for
λ = 100 Å is about 10−5 N m−1 which is equivalent toC = 1 for the pinnings represented
in this article.
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